Sharp estimates of the modified Hardy Littlewood maximal operator on the nonhomogeneous space via covering lemmas
نویسندگان
چکیده
منابع مشابه
Sharp Hardy-littlewood-sobolev Inequality on the Upper Half Space
There are at least two directions concerning the extension of classical sharp Hardy-Littlewood-Sobolev inequality: (1) Extending the sharp inequality on general manifolds; (2) Extending it for the negative exponent λ = n−α (that is for the case of α > n). In this paper we confirm the possibility for the extension along the first direction by establishing the sharp Hardy-Littlewood-Sobolev inequ...
متن کاملA Sharp Estimate for the Hardy-littlewood Maximal Function
The best constant in the usual L norm inequality for the centered Hardy-Littlewood maximal function on R is obtained for the class of all “peak-shaped” functions. A function on the line is called “peakshaped” if it is positive and convex except at one point. The techniques we use include variational methods. AMS Classification (1991): 42B25 0. Introduction. Let (0.1) (Mf)(x) = sup δ>0 1 2δ ∫ x+δ
متن کاملOn the Variation of the Hardy–littlewood Maximal Function
We show that a function f : R → R of bounded variation satisfies VarMf ≤ C Var f, where Mf is the centered Hardy–Littlewood maximal function of f . Consequently, the operator f 7→ (Mf) is bounded from W (R) to L(R). This answers a question of Hajłasz and Onninen in the one-dimensional case.
متن کاملCommutators of the Hardy-Littlewood Maximal Operator with BMO Symbols on Spaces of Homogeneous Type
Weighted L for p ∈ 1,∞ and weak-type endpoint estimates with general weights are established for commutators of the Hardy-Littlewood maximal operator with BMO symbols on spaces of homogeneous type. As an application, a weighted weak-type endpoint estimate is proved for maximal operators associated with commutators of singular integral operators with BMO symbols on spaces of homogeneous type. Al...
متن کاملRegularity of the Hardy-littlewood Maximal Operator on Block Decreasing Functions
We study the Hardy-Littlewood maximal operator defined via an unconditional norm, acting on block decreasing functions. We show that the uncentered maximal operator maps block decreasing functions of special bounded variation to functions with integrable distributional derivatives, thus improving their regularity. In the special case of the maximal operator defined by the l∞-norm, that is, by a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Hokkaido Mathematical Journal
سال: 2005
ISSN: 0385-4035
DOI: 10.14492/hokmj/1285766231